

Diran 410MF07

FDM Thermoplastic Filament Perfect for manufacturing tooling applications.

Overview

Diran™ 410MF07 is a nylon-based thermoplastic FDM® material, mineral-filled 7% by weight. It demonstrates very good toughness and impact strength combined with resistance to hydrocarbon-based chemicals. Its smooth, lubricious surface quality offers low sliding resistance.

Typical applications include jigs, fixtures and other forms of general manufacturing tooling, and is particularly effective for applications needing a non-marring interface between the tool and the workpiece.

Contents:

Overview	2
Ordering Information	3
Physical Properties	4
Mechanical Properties	5
Annendix	7

Ordering Information

3D Printer Compatibility: F370 $^{\text{TM}}$ and F370 $^{\text{®}}$ CR

Support Material: SUP4000B™

Build Tray: F370/F370CR, High Temperature

Table 1. Diran 410MF07 Thermoplastic Filament Ordering Information

Part Number	Description		
Filament Canisters			
333-90410	Diran 410MF07, 90 cu in, F123		
333-60400	SUP4000B™, 60 cu in, F123		
Printer Consumables			
123-00402-S	F123 Standard Head (All Layer Heights)		
123-00314-S	14-S F370/F370CR Build Tray, High Temperature		

Physical Properties

Values are measured as printed. XY and XZ/ZX orientations were tested.

For full details refer to the <u>Stratasys Materials Test Procedure on www.stratasys.com</u>.

DSC and TMA curves can be found in the Appendix.

Table 2. Diran 410MF07 Thermoplastic Filament Physical Properties

Property	Test Method	Typical Values XY	Typical Values XZ/ZX
HDT @ 66psi	ASTM D648 Method B	90 °C (194 °F)	90 °C (194 °F)
HDT @ 264psi	ASTM D648 Method B	70 °C (158 °F)	70 °C (158 °F)
Tg	ASTM D7426 Inflection Point	117.34 °C (243.21 °F)	117.34 °C (243.21 °F)
Mean CTE	ASTM E831 (40 °C to 140 °C)	56.60 μm/[m·°C] (31.44 μin/[in·°F])	112.6 μm/[m·°C] (62.56 μin/[in·°F])
Volume Resistivity	ASTM D257	1.50*10^15 Ω·cm	1.50*10^15 Ω·cm
Dielectric Constant	ASTM D150 1 kHz test condition	3.58	3.73
Dielectric Constant	ASTM D150 2 MHz test condition	2.85	2.95
Dissipation Factor	ASTM D150 1 kHz test condition	0.013	0.014
Dissipation Factor	ASTM D150 2 MHz test condition	0.000	0.012
Specific Gravity	ASTM D792 @ 23 °C	1.16	1.16

Mechanical Properties

Samples were printed with 0.010 in. (0.254 mm) layer height.

For the full test procedure please see the Stratasys Materials Test Procedure on www.stratasys.com.

Print Orientation

Parts created using FDM are anisotropic as a result of the printing process. Below is a reference of the different orientations used to characterize the material.

Tensile Curves

Due to the anisotropic nature of FDM, tensile curves look different depending on orientation. Below is a guide of the two types of curves seen when printing tensile samples and what reported values mean.

- A = Tensile at break, elongation at break (no yield point)
- B = Tensile at yield, elongation at yield
- C = Tensile at break, elongation at break

Table 3. Diran 410MF07 Thermoplastic Filament Mechanical Properties

		XZ Orientation ⁽¹⁾	ZX Orientation ⁽¹⁾
Tensile Properties: ASTM	D638		
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MPa	44.8 (1.5)	No Yield
Yield Strength	psi	6490 (220)	No Yield
Elongation @ Yield	%	4.3 (0.041)	No yield
0	MPa	40.4 (3.0)	30.7 (2.0)
Strength @ Break	psi	5860 (440)	4460 (290)
Elongation @ Break	%	12 (3.2)	3.1 (1.0)
Madulus (Flackia)	GPa	1.69 (0.017)	1.46 (0.021)
Modulus (Elastic)	ksi	246 (2.4)	212 (3.0)
Flexural Properties: ASTM	I D790, Procedure A		
Olympide & David	MPa	No break	46.7 (2.3)
Strength @ Break	psi	No break	6770 (330)
0	MPa	59.9 (1.6)	-
Strength @ 5% Strain	psi	8690 (230)	-
Strain @ Break	%	No break	3.1 (0.53)
Mark La	GPa	1.85 (0.043)	1.47 (0.065)
Modulus	ksi	268 (6.2)	213 (9.4)
Compression Properties:	ASTM D695		
)(MPa	75.8 (4.3)	163 (30)
Yield Strength	psi	11000 (630)	23600 (4300)
Madulus	GPa	1.54 (0.026)	1.46 (0.022)
Modulus	ksi	223 (3.8)	212 (3.2)
Impact Properties: ASTM	D256, ASTM D4812		
Izad Natahad	J/m	442 (76)	26.8 (5.3)
Izod, Notched	ft*lb/in	8.28 (1.4)	0.502 (0.10)
Izod, Unnotched	J/m	1420 (200)	142 (25)
	ft*lb/in	26.5 (3.8)	2.66 (0.46)

⁽¹⁾ Values in parentheses are standard deviations

Appendix

Figure 1. 2nd heating scan, DSC, for Diran 410MF07

Figure 2. TMA CTE curve inplane with the layer

Figure 3. TMA CTE curve normal to the layer

USA - Headquarters

7665 Commerce Way Eden Prairie, MN 55344, USA +1 952 937 3000

ISRAEL - Headquarters

1 Holtzman St., Science Park PO Box 2496 Rehovot 76124, Israel +972 74 745 4000

EMEA

Airport Boulevard B 120 77836 Rheinmünster, Germany +49 7229 7772 0

ASIA PACIFIC

7th Floor, C-BONS International Center 108 Wai Yip Street Kwun Tong Kowloon Hong Kong, China + 852 3944 8888

ISO 9001:2015 Certified

GET IN TOUCH.

www.stratasys.com/contact-us/locations

